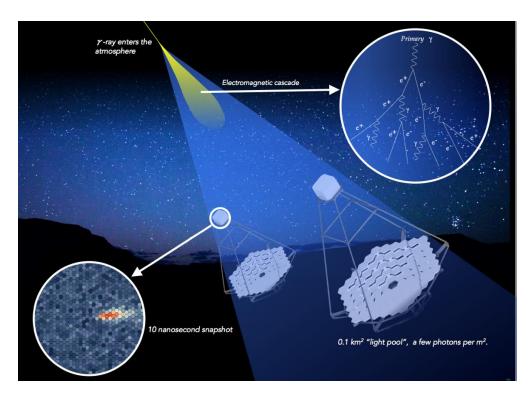
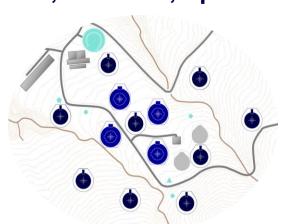


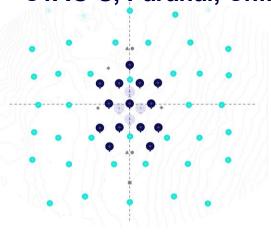
Assembly Integration Verification

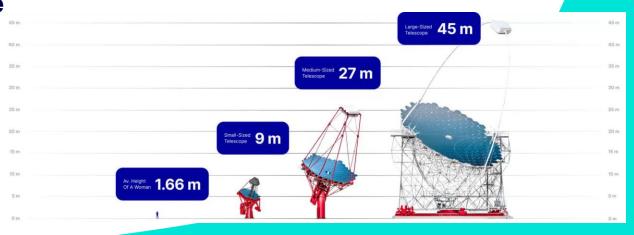
Volodymyr Savchenko, CTAO DPPS AIV


Volodymyr.savchenko@epfl.ch volodymyr.savchenko@cta-consortium.org

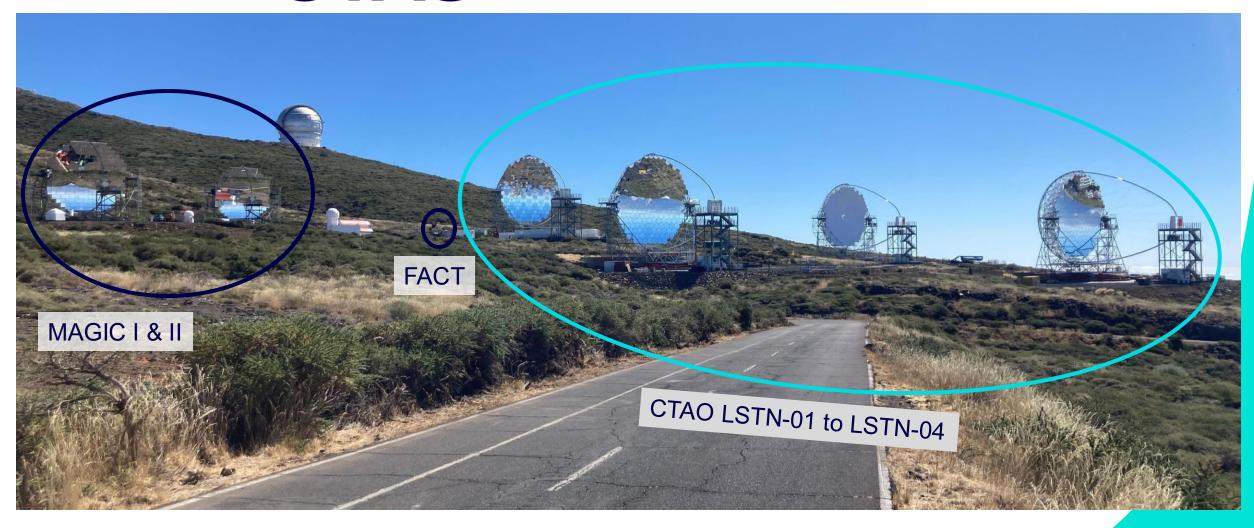
ADASS XXXV, Gorlitz, 11 November 2025


(Imaging Atmospheric) Cherenkov Telescope Array:

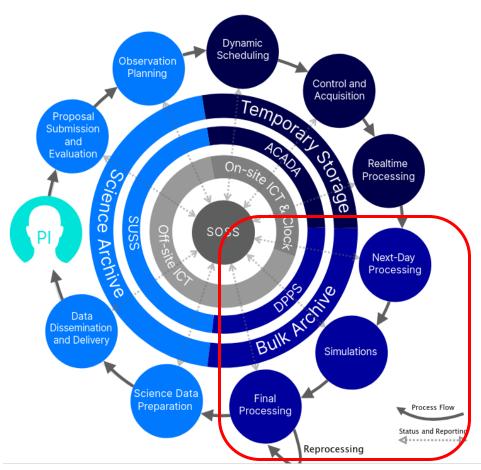



- Large collection areas (10⁵ 10⁶ m²)
- Major sensitivity improvement.
- Wide energy range 20 GeV 300 TeV
- Good energy (15 to 7%) and angular resolution (0.15 0.02 deg)
- Fast reaction to science alerts (30s to any point), fast realtime analysis and internal science alerts
- First IACT as Astronomical **Observatory**

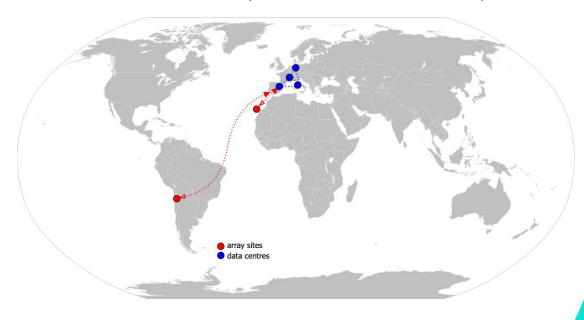
CTAO-N, La Palma, Spain



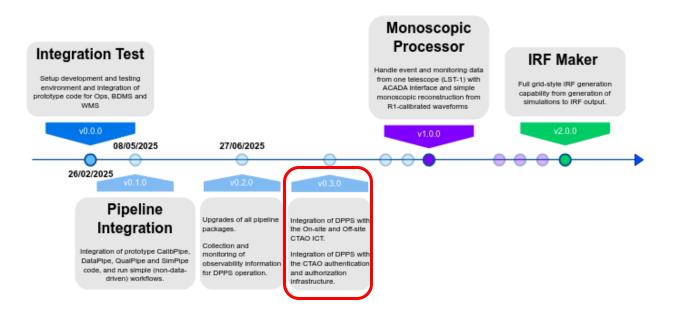
CTAO-S, Paranal, Chile

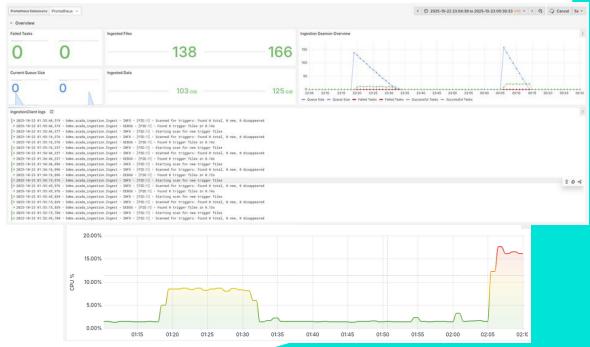

CTAO now

CTAO North Site, 2025-10-27, Koji Noda


DPPS: Data Processing and Preservation System

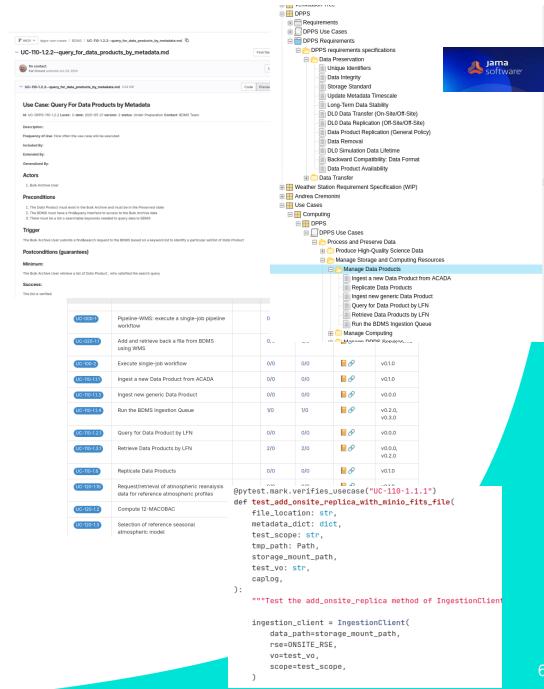
6 Data Centers (4 Off-Site and 2 On-Site)




- Distributed Large Storage (sub-exabyte) & Computing
- Robust Storage (30 years, 2+ copies at different locations, tape to reduce costs)
- Processing in-place (minimize network, maximize CPUs)
- Multi-stage data-driven workflows complex science pipelines
- Multiple pipeline passes (fast next-day results, high-quality results within 1 month, years after for new software)

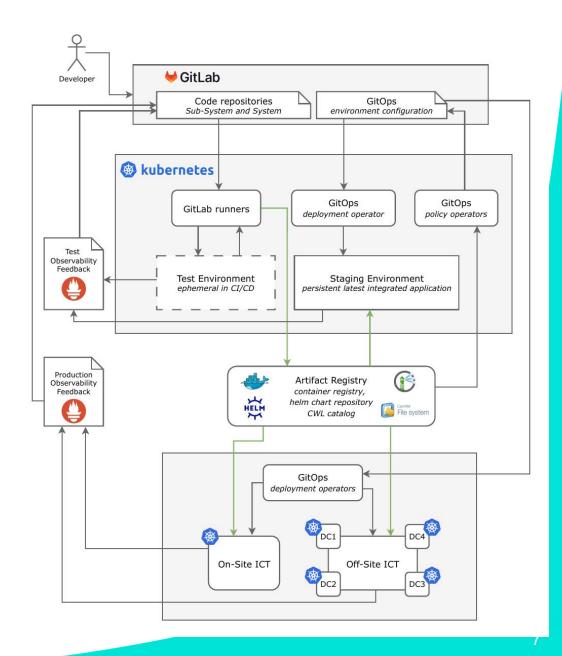
DPPS Releases and deployments: now

◆ DPPS minor release every 6 weeks, patch as need, first release Feb 2025, 4 releases since then. Pre-production test on 2 data centers (1 Off-Site, 1 On-Site)
 First tests, just ~30 min of observations, transfer of ~200 files with a total volume of ~200 GB



AIV incorporates stakeholder Requirements, Use Cases

Stakeholders require well-structured project documentation and requirements, so


- Test Cases are linked to Use Cases and Requirements
- Almost all **Test Cases** are expressed as automated integration tests producing **JUnit** reports annotated with pytest plugin, or any other way e.g. playwright
- Manual Demonstration Tests Cases remain possible, but discouraged (since they are harder to repeat)
- Non-functional requirements: quality and documentation are verified with automated static analysis (SonarQube, container image scanning)
- Verification by **Analysis** for dependencies

To understand how DPPS **Test Cases** are executed reliably, we need to address the deployment strategy.

AIV and Deployment strategy

- DevOps-driven reproducible deployment built to mimic closely production using containers, kubernetes, helm charts.
 - Development setup (can be laptop or not) volatile, precommit, but can be recreated as needed.
 - Gitlab CI pipelines pure reference test environment
 - Persistent GitOps-defined:
 - Staging in the Test Cluster
 - Pre-Prod and Prod on Data Centers
- Observability is compatible across all environments: learning to debug production issues from the start.
- Creating DPPS (>50 live containers) from scratch in a pristine environment, from build artifacts stored in harbor
 - Bootstrap takes ~5-15 min depending on the host
 - We tested a state-preserving setup, reusing DPPS cluster, which takes < 1min to load from state snapshot

DPPS AIV CI pipelines, Toolkit

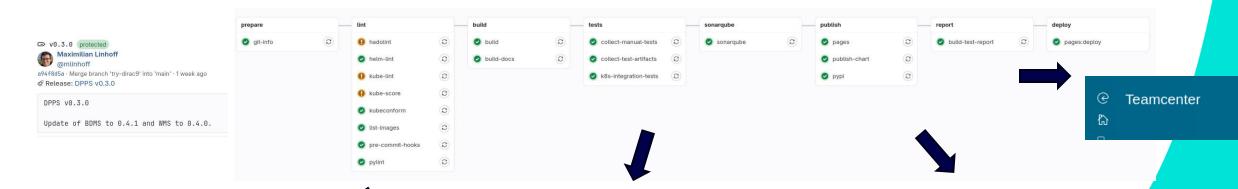
- Made to approximate production environment, allowing to repeat selected verification tests on clean live system.
- Gitlab CI pipelines are reused across all relevant gitlab projects.
- Built on python package, also for local dev environment.
- Collects observability in production-ready way
- Summarizes dependencies for sustainability analysis

Data Processing and Preservation Sy

Version: 0.3.0 Date: 2025-10-02

Introduction

The Data Processing and Preservation Systems is one of the major components of CTAO Computi for transferring and preserving the DLO data produced by <u>ACADA</u> and then processing it to data le


DPPS is composed of seven subsystems, split into three management subsystems:

- Bulk Data Management System (BDMS)
- · Workload Management System (WMS
- Operations Management System

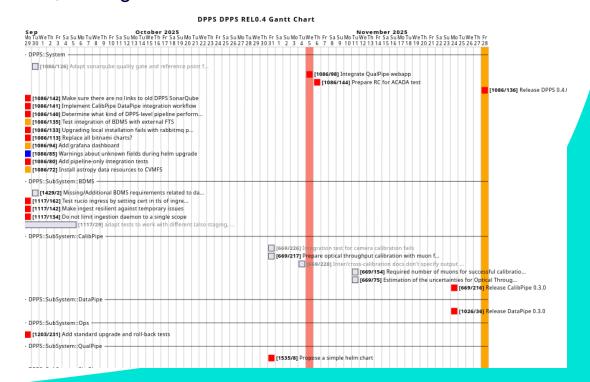
and four pipeline subsystems

- Calibration Production Pipeline (CalibPipe
- Data Processing Pipeline (DataPipe)
 Data Quality Pipeline (QualPipe)
- · Simulation Production Pipeline (SimPipeline)

3.1.5.1 QA metrics

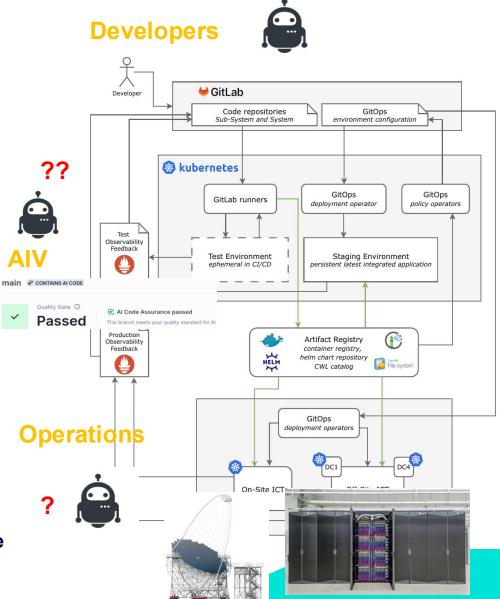
Metric	V	alue	Threshold	Status
Reliability Rating	1		1	OK
Security Rating	1		1	OK
Maintainability Rating	1		1	ОК
Coverage	1	0.00	80	OK
Duplicated Lines (%)	0	.0	3	OK
Security Hotspots Reviewed	1	0.00	100	OK

Use case summary: 1 partially completed, 41 completed of 42 total


OC ID	Name	Nev.	103	•	Status
000-1	Pipeline - WMS: execute a single - job pipeline workflow		2	2	full
020-1.1	Add and retrieve back a file from BDMS using WMS		5	5	full
100-2	Execute single-job workflow		2	2	full
110-1.1.1	Ingest a new Data Product from ACADA		3	3	full
110-1.1.3	Ingest new generic Data Product		2	2	full
110-1.1.4	Run the BDMS Ingestion Queue		2	2	full
110-1.2.1	Query for Data Product by LFN		1	1	full
110-1.3.1	Retrieve Data Products by LFN		1	1	full
110-1.6	Replicate Data Products		2	2	full
120-1.10	Request/retrieval of atmospheric reanalysis data for reference atmospheric profiles		7	7	full
			-	-	

DPPS Component	Gitlab Project	Helm name	pyproject name	Version
BDMS	bdms	bdms	ctao-bdms-clients	v0.4.1
WMS	WMS	wms	ctao-wms-clients	v0.4.0
SimPipe	simpipe	simpipe	ctao-simpipe	v0.2.0
DataPipe	datapipe		ctao-datapipe	v0.2.1
CalibPipe	calibpipe		ctao-calibpipe	v0.2.0
QualPipe	qualpipe		ctao-qualpipe	v0.2.1
CVMFS	CVMFS Helm Chart	cvmfs	cvmfs-chart	v0.4.0
bdms-rucio-policy	bdms-rucio-policy		ctao-bdms-rucio- policy	v0.2.0
CTADIRAC	CTADIRAC		CTADIRAC	3.0.3
CVMFS	CVMFS Helm Chart	cvmfs	cvmfs-chart	v0.5.2
mdps	MDPs		molecularprofiles	v2.1.2
QualPipe-WebApp	qualpipe-webapp		ctao-qualpipe- webapp	v0.1.1

AIV role in release cycle


- ◆ AIV executes development, testing, and release cycle
 - o **Trunk-based** development all changes merged to main, no long-living side-branches.
 - o Test-driven development: start with requirements, then gitlab issue/tasks, then (x-failing) test, only then code
 - Short sprints allowing frequent and less costly integration exercises
 - Fully automated integration pipeline can be run at any time, and is done regularly by AIV Bot (but now it's not run often to save resources)
- ◆ Support in gitlab use practices: customized gantt, issues table, manage labels

Name	Contact	Pipeline	Artifacts	UC	Impl	Test	Rel	All
DPPS	Volodymyr S.	pipeline running	Docs PDF	2,2 (0,0)	0,0 (0,0)	0,0 (0,3)	1,1 (0,0)	19,23 (2,5)
BDMS	Syed A.	pipeline passed	Docs PDF	0,0 (0,0)	1,2 (0,0)	0,0 (0,0)	0,0 (0,0)	16,25 (3,6)
WMS	Natthan P.	pipeline passed	Docs PDF	0,0 (0,0)	2,2 (0,0)	0,0 (0,0)	2,2 (0,0)	9,9 (0,0)
SimPipe	Gernot M.	pipeline passed	Docs PDF	0,0 (0,0)	0,0 (0,0)	0,0 (0,0)	1,1 (0,0)	2,3 (0,0)
DataPipe	Karl K.	pipeline passed	Docs PDF	0,0 (0,0)	0,0 (0,0)	0,0 (0,0)	1,1 (0,0)	4,4 (0,0)
CalibPipe	Mykhailo D.	pipeline passed	Docs PDF	0,0 (2,2)	4,4 (0,0)	0,0 (0,0)	1,1 (0,0)	8 ,9 (2,3)
QualPipe	Mykhailo D.	pipeline passed	Docs PDF	0,0 (0,0)	0,0 (0,1)	0,0 (0,0)	0,0 (0,0)	0,0 (0,1)
Ops	Volodymyr S.		Docs PDF	0,0 (0,0)	0,0 (0,0)	0,0 (0,0)	0,0 (0,0)	3,4 (0,0)
DPPS all	Volodymyr S.		Docs PDF	6,6 (4,4)	14,16 (12,17)	0,1 (0,3)	6,12 (0,0)	169,206 (39,54)

AI in the CTAO DPPS AIV

- CTAO has no Al strategy, Al agency not recognized, people represent all tools
- In CTAO DPPS Computing:
 - Big topic in CERN which built base technologies we use, MCP is added in rucio
 - Key DPPS projects use **github** with its Al features, but own **gitlab** misses them
 - Autocomplete, agents, chatbots, even vibe-coding is daily work of many
 CTAO DPPS developers, especially docs and manuals.
- In operations has potential threat detection, security scanning, built-in DPPS observability stack
- AIV Verification
 - Basic goal of development can be seen as translation of requirement to code but doing that fully AI appears too wishful currently.
 - Creating tests based on codebase and requirements works better
 - AIV operates Bot managing gitlab, jama, making code contributions, with experimental interface to Claude and <u>Apertos</u>
- AIV Quality Assurance
 - Core role of the AIV is to ensure transparency, compliance, safety, minimize technical and cognitive debt, so it acts as control on AI code. SonarQube actively helps in this
 - QA starts to face easy to generate but hard to review Al slop

Summary so far, plans

- ◆ CTAO is under construction to be done in 2030, is deployed incrementally so is getting real already now!
- ◆ DPPS Released 4 minor versions (0.0, 0.1, 0.2, 0.3) in 6 months, covering first broad set of key use cases
- CTAO DPPS AIV embraces, continuous automated verification and delivery, DevOps, human processes are displaced but emphasized.
- At the same time, producing high-quality project documentation (release reports, verification claims) demonstrating compliance to stakeholder requirements.
- As requirement-to-code conversion includes a lot of human work, AIV emphasizes more adversarial aspect to AI, preventing technical and cognitive debt, more GenAI means more AIV than development. Safety-critical systems of CTAO need a lot of oversight over AI contribution
- CTAO grows by months not years, stay tuned for more updates!

