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We present a novel representation learning framework for the Gaia XP DR3 stellar dataset that leverages two advanced tools: Project X: The Workflow
Spherinator and HiPSter. Spherinator provides a method for learning compact representations of high-dimensional data, including = d 4 8 : B b : :
images, point clouds, data cubes, time series, and spectra. Our training process uses variational autoencoders with hyperspherical Data Pre-processing Tier Data-driven Modeling Tier Discovery Tier
latent spaces to efficiently and robustly extract physically meaningful parameterizations of data properties. Our approach explicitly Pre-processing engines Multimodal Simulation-Based Inference
incorporates uncertainties from experiments into representation learning, which produces more robust and physically consistent EIIEE'-. | representation modules o
latent represen:\tations. HiPSter .genfarat.es and serves .HiPS-based (hierarchicaI. progre.ssivc.a surveys) representations of learned — el PEST —»  Spherinator Zerinator apr:lrr;xlin?;tiﬁn
features, enabling the scalable visualization and exploration of the latent space using Aladin-Lite. Read The Docs cbservational e — | |
We demonstrate the scientific potential of our method using observational data from Gaia XP DR3 and showcase the effectiveness of surveys Strolrapniie *_ Ba};iaﬂ
cross-disciplinary tools developed under the EU SPACE initiative to enhance data-driven astronomy. | F'?FE'S'E'" Model
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The Gaia Data Release 3 (DR3) represents the largest spectroscopic survey ever conducted, encompassing User : _
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approximately 220 million low-resolution spectra. The survey captures data across two photometric channels: the JRHLES } Point clouds (images. Spectia)lll (Point clouds)
blue photometer (BP, 330-680 nm) and red photometer (RP, 630-1050 nm), collectively known as XP spectra. Each " 5 . it L : Similarity
spectrum in DR3 represents a time-averaged mean spectrum, parameterized using Hermite polynomial basis / Sophisticated ala cubes y — .
functions with 55 coefficient amplitudes per channel, enabling efficient storage and transmission of spectral iy e cosmological Time series Low-dimensional data ¥
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N HIPSter: Inference and Visualization
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The HEALPix framework is used to generate a Hierarchical Progressive Survey (HiPS) [3] to map
the corresponding spherical latent space positions.
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The resulting HiPS data
structure is optimized for
web-based visualization

through Aladin-Lite.
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Reconstruction Performance

. PEST: Data Preparation Pipeline

The Preprocessing Engine for Spherinator Training (PEST) serves as a comprehensive data
preparation tool designed to handle diverse input formats. PEST integrates all preprocessing
| steps into a unified workflow, producing standardized data containers using the Apache

| Parquet format for optimal performance and portability.
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The Spherinator model demonstrates excellent reconstruction capabilities on |

Gaia XP spectra, successfully capturing the relevant broad spectral features. =
The uncertainty-aware training approach results in reconstructions that '
appropriately reflect the confidence levels in different spectral regions, with |
higher fidelity in well-constrained wavelength ranges and appropriate b
uncertainty propagation in noisier regions.

Spherinator: Variational Autoencoder Architecture

The Spherinator implements a novel variational autoencoder (VAE) that maps input data to a
(hyper-)spherical latent space, built using the Pylorch Lightning framework. This architecture
offers exceptional flexibility, supporting multiple data modalities including images, spectra,
data cubes, graphs, and point clouds through modular encoder-decoder designs. For
spectroscopic data processing, the model employs a one-dimensional convolutional neural
network (ID-CNN) architecture optimized for sequential spectral features.
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| Uncertainty-Aware Loss Function

The VAE loss function combines Kullback-Leibler (KL) divergence with a reconstruction term to balance
latent space regularization and data fidelity. To incorporate observational uncertainties inherent in Gaia
flux measurements, we employ a negative log-likelihood (NLL) approach where the reconstruction loss is
computed against a normal distribution parameterized by the observed flux and its 1-c uncertainty.
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